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Settling velocity of particles, which is the main parameter of jig separation, is affected by  
physical (density) and the geometrical (size and shape) properties of particles. The authors worked 
out a calculation algorithm of particles falling velocity distribution for monosized spherical and 
irregular particles assuming that the density of particles, their size and shape constitute random 
variables of fixed distributions. The distributions of falling velocity of irregular particles of a narrow 
size fraction were calculated utilizing industrial experiments. The measurements were executed and 
the histograms of distributions of projection diameter, as well as volume and dynamic shape 
coefficient, were drawn. The separation accuracy was measured by the change of process 
imperfection of irregular particles in relation to spherical ones, resulting from the distribution of 
particles settling velocity. 
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INTRODUCTION 

 
Enrichment in jigs occurs during vertical pulsating motion of the suspension 

containing particles. After some time of such motion, the particles are stratified into 
groups differing in physical (density) and geometrical (particle size and shape 
coefficient) properties. According to Mayer’s potential theory (Mayer, 1964) the 
separation runs towards minimizing the potential energy of the system. If the material 
were separated into densimetric fractions and each densimetric fraction into size 
fraction and the size fractions arranged from the largest to the smallest, then the 
porosity of the layer after separation would be larger than before separation (Kuprin et 
al, 1983). Consequently, the potential energy of the system after separation would be 
larger than before separation. This is in contradiction with the principle of least action 
according to which the processes run towards the minimization of potential energy. 
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The decrease of porosity will occur when the voids between larger particles are 
replaced by smaller ones. It will happen in the situation when smaller particles of 
higher density will be transferred to the higher sub-layer of larger particles of lower 
density. Such a stratification means that in consecutive layers, for ideal separation, 
there are particles of the same value of terminal settling velocity. Thus, it can be stated 
that terminal settling velocity is this property (separation argument) according to 
which, for ideal separation, the stratification of the material into respective subsets of 
the same value of separation argument occurs.  

In industrial separation processes, as a result of particles dispersion resulting from 
interactions between particles, the fouling of respective subsets with particles of 
neighboring layers occurs, and these are characterized by different, for a given layer, 
values of settling velocity. This phenomenon is characterized by the partition curve 
and its mathematical representation, i.e. the partition function while numerically it is 
estimated by the so-called probable error and imperfection parameters. These 
indicators are a measure of separation efficiency which determines the quality of 
separation machinery. Respectively, for every separator the representative measure of 
separation efficiency should be applied, corresponding to the real separation argument 
in the separator. Since the settling velocity of an irregular particle depends on the 
particle shape, this paper presents the method of evaluation of the effect of particle 
shape on separation efficiency. To achieve this, the authors calculated the distributions 
of settling velocities of spherical and irregular particles according to the empirical data 
for a narrow 8-10 [mm] size fraction. 

 
TERMINAL SETTLING VELOCITY OF IRREGULAR PARTICLES 

 
Terminal settling velocity of a particle is the value of velocity which is obtained by 

a particle which moves uniformly in the medium. It is calculated from the particle 
motion equation. The following forces act on irregular particles moving in water under 
the force of gravity for Reynolds numbers greater than 5.102:   

 
 1) gravity force:  Q = ρVg  (1) 
 
 2) buoyancy force: Fw= ρoVg  (2) 

 
3) medium dynamic resistance force, determined by Newton’s formula: 
 

 SvP tz
2

02
1 ρψ−= ,  (3) 

 
where: V - particle volume, vt  – momentary velocity of particle motion, ψz  – drag 
coefficient for a particle, S – particle projection area on the plane perpendicular to the 
motion direction, ρ – particle density, ρo – medium density, g  – acceleration due to 
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gravity, 
η

ρ rvto=Re  – Reynolds number, r – particle radius, η – dynamic viscosity 

coefficient of the medium. The expression 2
02

1 vρ  represents the liquid 

hydrodynamic pressure. Respectively, the equation of particle motion in a vertical 
direction will be as follows: 
 

 ( ) SvVg
dt
dvV tz

2
00 2

1 ρψρρρ −−=   (4) 

 
Equation (4), after transformation, takes the form:  
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tbva
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−=   (5) 

 

where  ga
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Formula (5) is known as Riccati’s equation (Leja, 1971). This equation can be solved 
by quadratures and its solution is as follows (Ponomariev, 1973): 
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The following limit: 
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 (7) 

 
presents the general formula for the terminal settling velocity of a particle. Its detailed 
form, with respect to irregular particles, must consider particle shape, characterized by 
shape coefficient and the value of drag coefficient. In Eq. 7, the particle drag 
coefficient ψz, particle volume V and particle projection area S occur. The following 
measures of particle size are used to characterize these values: 
• equivalent diameter dz, which is the diameter of a sphere of the volume equal to 

the particle volume V according to the dependence: 
 

 3
6
π
Vd z=   (8) 
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• projection diameter dp, which is equal to the diameter of a circle of the area equal 
to the particle projection area S, i.e. 

 

 
π
Sd p

4
=  (9) 

 
The particle drag coefficient is connected with the sphere drag coefficient in the 

Newtonian range of Reynolds number by the following dependence (Thomson and 
Clark, 1991, Ganser, 1993): 
  ψz  = k2 ψk  (10) 
 
where: k2 is the dynamic or Newtonian coefficient of particle shape. 

For the sphere, the drag coefficient is ψk = 0.46 (Abraham, 1970, Concha and 
Almendra, 1979). 
Thus: 
 ψz = 0.46 k2 . (11) 

 
Therefore, the particle drag coefficient depends on the particle shape and more 

irregular particles provide higher resistance forces. Ganser (1993) gave the following 
statistical dependence of dynamic shape coefficient upon the particle sphericity 
coefficient φ : 

 
( ) 5743.0log148.1

2 10 φ−=k .  (12) 
 
Equation 12, according to Ganser, can be applied to particles of any shape while 

the sphericity coefficient as the particle measure is defined as follows (Wadell, 1933, 
according to Heiss and Coull, 1952): 
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where: dk  – diameter of a sphere of the area equal to the particle area, A – particle 
area, As  – area of a sphere of the volume equal to the particle volume. 

Due to the difficulties in measuring the particle area, Wadell proposed an 
approximation of the sphericity coefficient by the circularity coefficient, calculated 
from measurements on the plane and defined as follows: 

 

 
sz

c C
Ck ⎟⎟

⎠

⎞
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⎝

⎛
=≅φ   (14) 

where: Cz  – perimeter of the particle projection area, C – perimeter of the circle of the 
area equal to the area of the particle projection area. 
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If appropriate expressions of formulas in Eqs 11, 8, and 9 are substituted for ψz , V 
and S  into formula in Eq.7, the following expression for irregular particle settling 
velocity is obtained: 

 
2

3

33.5
kd

d
xv

p

z=
   (15) 

where : 
0

0

ρ
ρρ −

=x  – reduced particle density. 

For the spherical particle dz = dp = d  and k2 = 1, thus the settling velocity is 
expressed by the formula: 

 dxv 33.5= . (16) 
 

Heywood (1937, according to Heiss and Coull, 1952) proposed to determine the 
particle volume by the volume shape coefficient k1H, according to the formula: 

 

 3
1 pH dkV = .  (17) 

 
In this paper the volume shape coefficient k1 was determined from the analogical 

expression: 

 
6

3

1
pd

kV
π

=  .  (18) 

 
After substituting ψz, S and V with the expression from Eq. 11, 9, and 18 for 

irregular particle settling velocity into Eq.7, the following formula is obtained: 
 

 ⎟
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2

133.5
k
k

dxv p   (19) 

 
Equations 16 and 19 will be applied further in this paper to determine the 

distributions of settling velocities of spherical and irregular particles. 
 

DISTRIBUTION OF SETTLING VELOCITY FOR A SAMPLE OF MONOSIZED  
SPHERICAL PARTICLES 

 
Let R, X, Dp, K1, and K2 determine random variables of particle density, reduced 

density, particle projection diameter, particle volume shape coefficient and particle 
dynamic shape coefficient, respectively. For spherical particles k1 = k2 = 1, dp = do  
where do  – size of feed particles. In this situation particle settling velocity vms is 
expressed by the formula: 
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 oms dxv 33.5=   (20) 
 
Reduced density x is connected with particle density by the dependence: 
 

 
o

ox
ρ
ρρ −

=    (21) 

from which: 
 )(xx oo ρρρρ =+=    (22) 
 

Let the random variable R have the distribution determined by the probability 
density function of density fρ(ρ). Then, the random variable X  has the distribution of 
density (Gerstenkorn and Śródka, 1972): 

 

 [ ]
dx

xdxfxf )()()( ρρρ=   (23a) 

 

 )()( ooo xfxf ρρρρ ρ +==   (23b) 
 

After introducing a new random variable: 
 

 2
1

1 XY =   (24) 
from which )( 1

2
1 yxyx == . 

The settling velocity is:  

 133.5 ydv om =   (25) 
 

The distribution of the random variable Y1, analogically as above, is as follows: 
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1
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dy
ydx

yxfyf =   (26a) 
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The following random variable Y2 = 5.33 Y1  ( )y(y
33.5

y
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probability density function: 
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After the transformations the settling velocity as a random variable is expressed by 
the following formula: 
 2YdV oms =  (28) 

 
Consequently, the settling velocity of the set of  monosized spherical particles has 

the frequency function: 
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DISTRIBUTION OF SETTLING VELOCITY FOR MONOSIZED IRREGULAR 

PARTICLES 
 

It was assumed that the sample of particles have the same value of the projection 
diameter op dd = while the particle shape coefficients constitute the random variables 
K1 and K2 of the frequency functions w1(k1) and w2(k2), respectively. Then, the 

frequency function of the random variable 
2

1

K
K

Z =  is expressed by the following 

formula (Gerstenkorn and Śródka, 1972): 
 

 ( )∫= 2212221 )()( dkkzwkwkzp   (30) 
 

The following random variable 2
1

ZA =  (z = a2= z(a)) has the frequency function 
determined by the formula: 

 [ ]
da

adzazpap )()()( 12 =  (31a) 

 
    p2(a) = 2ap1(z = a2) (31b) 

 
The random variable of settling velocity of monosized irregular particles, after the 

above transformations, is : 
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 Vmn = Vms . A  (32) 
 

As it can be seen from Eq. 32, the random variable of settling velocity of irregular 
particles is the product of the random variable of settling velocity of monosized 
spherical particles and the random variable being the function of particle shape 
coefficients. Consequently, the function of distribution density of settling velocity of 
monosized irregular particles is (Gerstenkorn and Śródka, 1972): 
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EXPERIMENTAL 

 
A narrow 8-10 mm size fraction was fed into the Allmineral jig.  In this sample the 

densimetric analyses were performed. Moreover, by means of the image analysis, the 
distribution of projection diameter was determined as well as the distributions of 
volume and dynamic shape coefficients. In order to calculate the dynamic shape 
coefficient, the photographs of particles were taken with a digital camera in the most 
stable position. Next, using the image analysis software, the projection areas and 
perimeters of individual particles were calculated. Applying Eq. 14, the sphericity 
coefficients φ  and projection diameters pd were fixed, according to Eq. 9. The 
dynamic shape coefficient k2 was calculated using dependence shown in Fig. 12. The 
volume shape coefficient k1 was determined according to the volumetric method, 
consisting in the measurement of density of individual particles with a pycnometer and 
in calculating their volumes. The shape coefficient k1 was calculated using Eq. 18. 

 
MEASUREMENT RESULTS AND DISCUSSION 

 
DISTRIBUTION OF PARTICLE DENSITIES 

 
The cumulative distribution function of particle density, according to the dispersive 

particle model (Brożek, 1995), is expressed by a two-parameter function of gamma 
distributions family. As it will be shown further, that it is the Weibull distribution 
which cumulative distribution function and frequency function are as follows: 
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where: cρ  – characteristic density %)21.63)(( == cF ρρρ , kn  – non-homogeneity 
coefficient. 

On the basis of empirical data on the densimetric analysis, the coordinates of the 
cumulative distribution function of density were calculated and, next, Weibull’s 
distribution was fitted to the empirical date. Distribution parameters ρc and kn were 
obtained from this fitting. Figure 1 presents the model dependence with marked 
empirical values. The compatibility of the model with the experiment was estimated, 
calculating the index of curvilinear correlation. Its high values (R > 0.99) prove a good 
compatibility of the model distribution function with the empirical date. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Distribution of particle 
densities for size fraction 8 – 10 

[mm], ρc = 2170 [kg/m3]; kn = 3.97 
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DISTRIBUTION OF PROJECTION DIAMETER 
 

Figure 2 presents the histogram of distribution of projection diameter. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Histogram of distribution 
of projection diameter of  8 -11 

[mm] size fraction: 
dcp = 13.2 [mm]; kp = 3.17; bp = 8 
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By means of the Statistica program the frequency function of projection diameter 
was fitted to the histogram. The best fitting was obtained for Weibull’s distribution in 
the form: 
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where: dc – characteristic value of projection diameter, kp – non-homogeneity 
coefficient, bp  – value of shift of random variable. 

For the description of Fig. 2 the parameters of Weibull’s distribution together with 
the value of shift of random variable bp are given. The average value of projection 
diameter is calculated from the following formula (Gerstenkorn and Śródka, 1972): 

 

 p
p

opp b1
k
1dd +⎟

⎟
⎠
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+= Γ  (37) 

 

The average value 8.12=pd  mm was assumed as the size of spherical particle in 
calculating the distribution of settling velocity of spherical particles. 

 
DISTRIBUTION OF SHAPE COEFFICIENTS 

 
Figures 3 and 4 show the histograms of distributions of random variables K1 and 

K2. 
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Fig. 3. Histogram of distribution 
 of volume shape coefficient 

 k1, λ1 = 11 
 

 
The investigations of other authors indicate that the distributions of shape 

coefficients are of the  gamma type (Hodenberg, 1998; Stark and Muller, 2005). 
Because of this, Rayleigh’s and Weibull’s distributions were fitted to these 
histograms. The statistical evaluation of compatibility of model distributions with 
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empirical date was the same for both distribution types and, consequently, Rayleigh’s 
distributions of shape coefficients were accepted and used in further considerations. 
Their general equations are as follows: 
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111111 kk2kw λλ −=   (38) 

 

)exp()( 2
222222 kk2kw λλ −=   (39) 

 
where  λ1 and λ2 are distribution parameters. 

The values λ1 = 11 and λ2 = 0.015 for distribution parameters were obtained from 
the fitting to empirical distributions with the Statistica program. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Histogram of distribution 
 of dynamic shape coefficient  

k2 , λ2 = 0.015 
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DISTRIBUTION OF SETTLING VELOCITY OF SPHERICAL PARTICLES 
 

Applying the Eq. 29 and the algorithm of chapter 3, the frequency function and the 
cumulative distribution function of settling velocity of spherical particles were 
calculated. 
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where: do = 812 .d p = mm  – diameter of sample particles, while vmsc is: 

 o

oc
ocomsc dydv

ρ
ρρ −

== 33.52   (42) 
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Fig. 5. Frequency function of particle settling velocity for size fraction 8 -10 [mm] 
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Fig. 6. Cumulative distribution function of settling velocity of particles for size faction 8 -10 mm,  

vmsc = 0.599 m/s, kn = 3.97 
 
As it can be seen from Eq. 41 – 42 that the distribution of settling velocity in this 

case is expressed by the parameters of distribution of particles density and their 
diameter. Analogically as for the density distribution, this is also Weibull’s 
distribution. The parameters of settling velocity distribution are constituted by non-
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homogeneity coefficient kn  and characteristic velocity vmsc, calculated according to 
Eq. 42. The density ρo of liquid, occurring in this formula, which is transferred to the 
jig chamber, is higher than water density and equals ρo=1093 kg/m3 because it is 
recirculated from Dorr’s settling tank. Figures 5 and 6 present the frequency and 
cumulative distribution function of settling velocity, respectively, in the sample of 
spherical particles. 

 
DISTRIBUTION OF SETTLING VELOCITY OF IRREGULAR PARTICLES 

 
According to Eq. (33) and the algorithm of chapter 4 the frequency function of 

settling velocity of irregular particles is expressed by the following formula:  
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As it results from Eq. 43 that the distribution of settling velocity is openly 

dependent on the distribution of particle shape coefficients. Because of complexity of 
that integral, integration was performed by the numerical method. Figures 7 and 8 
present, respectively, the frequency and cumulative distribution function of settling 
velocity of irregular particles. The comparison of both graphs indicate that, after 
considering the distribution of shape coefficients, the shape of the frequency function 
changes (distribution asymmetry changes from negative to positive), the values of the 
most probable velocity decreases from 0.6 m/s to 0.084 m/s and also the maximum 
value of settling velocity decreases from 0.88 m/s to 0.4 m/s. Consequently, the flat 
particles of higher density than the analogical particles of lower density and lower 
asymmetry will be grouped in the light product. This conclusion is in agreement with 
the observed experimental facts (Ferrara et al., 2000; Ociepa and Mączka, 2000). 
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Fig. 7. Frequency function of settling velocity of irregular particles 
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Fig.8. Cumulative distribution function of settling velocity of irregular particles 

 
 

EFFECT OF PARTICLE SHAPE UPON SEPARATION EFFICIENCY 
 

The indicators based on the partition curves, i.e. probable error and 
imperfection, are the most popular and most often applied indicators of evaluation of 
separation efficiency. Belugu (1959, according to Samylin et al., 1976) gave the 
following empirical dependence to evaluate the effect of distribution of particle 
density in the feed: 

 αtgII o 021.0+=   (44) 

where: Io  – value of imperfection, characteristic for a given jig, 
ρ
ργα

∆
∆∆

=
)(

Iktg , kI 

– coefficient of scale, 100±=∆ρ  kg/m3  – range of density around partition density, 
)( ργ ∆∆  – content of particles in the feed of the density range ),( ρρρρ ∆+∆− rr  in 

%. To estimate the effect of shape coefficients distribution upon separation efficiency 
the authors used the dependence analogical to dependence in Eq. 44 in relation to 
settling velocity as the argument of separation: 
 
 mnomnmn tgaIII α=−=∆   (45) 
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velocity. 
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The width of ∆v range was selected by analogy to the width of density range 

100±=∆ρ  kg/m3 )12502000(
8
1

−≅  kg/m3 which Belugu proposed in Eq. 44. 

According to Fig. 8 32.0
8
1
⋅=∆v mm. 

Analogically to Eq. 45, for the separation of spherical particles the equation can be 
written as: 

msomsms tgaIII α=−=∆  (46) 
 

And the values of this equation have a similar interpretation as in Eq. 45 only in 
relation to spherical particles. Dividing by sides Eq. 45 by Eq. 46 we obtain: 
 

)(
)(

v
v

tg
tg

I
I

ms

mn

ms

mn

ms

mn

∆∆
∆∆

==
∆
∆

γ
γ

α
α

   47) 

 
From Eq. 47, having the distributions of settling velocities of irregular and 

spherical particles in the feed, it is possible to calculate the relation of process 
imperfection changes during the separation of irregular and spherical particles in the 
same conditions. For the separation velocity determined from the equation of partition 
curve for waste of 8-10 mm size fraction the following value was obtained  (Surowiak, 
2007): vr = 0.159 m/s. Respectively, from Fig. 8. H(vmn = 0.159) ≅  82% and ∆γmn(∆v) 
≅  28%. Next, for spherical particles, according to Fig. 6. for H(vms) = 82%, velocity 
vms = 0.68 m/s. The content of spherical particles of velocity range (0.68 – ∆v; 0.68 + 
∆v)  in the feed is %16)( ≅∆∆ vmsγ . Respectively, from Eq. 47: 
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  (48) 

 
According to the obtained results, it can be stated that in the case of the tested coal 

sample the irregular shape of particles results in about 70% larger change of process 
imperfection on average than in the case of separation of a sample of monosized 
spherical particles under the same conditions, which is connected with the decrease of 
separation efficiency of irregular particles. This increase results from the decrease of 
difference of settling velocity of irregular particles in relation to the difference of 
settling velocity of spherical particles. 
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CONCLUSIONS 
 

• The frequency function of settling velocity in the sample of monosized spherical 
particles is Weibull’s distribution of negative asymmetry. On the other hand, 
however, in the case of monosized irregular particles (particles of the same 
projection diameter and distribution of shape coefficients), the asymmetry is 
positive. The irregular particles shape decreases the value of settling velocity. This 
increases the probable error as a result of the decrease of the non-homogeneity 
rate of velocity distribution in the sample. 

• The irregularity of particle influences the separation efficiency measured by the 
imperfection change. The difference in particle settling velocity decreases with the 
growth of the particle irregularity rate (increase of dynamic shape coefficient and 
decrease of volume coefficient). This narrows the range of variation of settling 
velocity of irregular particles in relation to the analogical range for spherical 
particles, causing the increase of particles content in the range of settling velocity 
around partition velocity and, automatically, also the increase of imperfection. 
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Na prędkość opadania ziaren, będącą argumentem rozdziału w osadzarce, wpływają właściwości 
fizyczne (gęstość) oraz geometryczne (wielkość i kształt) ziaren. W artykule opracowano algorytm 
wyliczania rozkładu prędkości opadania ziaren w monodyspersyjnej próbce ziaren sferycznych i 
nieregularnych przy założeniu, że gęstość ziaren, ich wielkość i kształt stanowią zmienne losowe o 
określonych rozkładach . W oparciu o eksperyment przemysłowy wyliczono rozkłady prędkości opadania 
ziaren nieregularnych w wąskiej klasie ziarnowej. Wykonano pomiary i wykreślono histogramy 
rozkładów średnicy projekcyjnej, objętościowego i dynamicznego współczynnika kształtu. Dokładność 
rozdziału mierzono zmianą imperfekcji procesowej ziaren nieregularnych w stosunku do ziaren 
sferycznych wynikającą z rozkładu prędkości opadania ziaren. 


